Klärschlammdesintegration – Überblick über verschiedene Verfahren

K. Nickel, U. Neis, Hamburg

1. Grundlagen

Bei der mechanisch-biologischen Reinigung kommunaler und gewerblicher Abwässer fallen Klärschlämme an. Für die nachfolgende umweltgerechte Entsorgung muss der biologisch abbaubare organische Schlammanteil weitgehend reduziert werden. Auf kommunalen Kläranlagen hat sich für diese Aufgabe in erster Linie die anaerobe Schlammstabilisierung in sogenannten Faulbehältern etabliert. Annähernd 90% der auf deutschen kommunalen Kläranlagen anfallenden Schlammmengen werden anaerob stabilisiert.

Die anaerobe Stabilisierung ist anerkannte Regel der Technik und führt zu einem teilweisen Abbau der organischen Bestandteile des Rohschlammes. Eine Verminderung der zu entsorgenden Schlammmasse geht damit einher. Wesentlicher Nachteil der anaeroben Klärschlammstabilisierung ist die geringe Umsatzleistung dieses Prozesses.

Klärschlamm ist ein Feststoff-Wasser-Gemisch. Rohschlämme, ein Gemisch aus Primärund Überschussschlamm, weisen einen organischen Anteil von etwa 65 bis 70% auf. Die organische Fraktion liegt dabei im wesentlichen als partikuläre Phase vor, entweder als organischer Feststoff des Primärschlammes oder als biologische Zellen des Überschussschlammes. Unter anaeroben Bedingungen werden die organischen Schlammbestandteile von fakultativ bzw. obligat anaeroben Mikroorganismen abgebaut. Ausgefaulte Biofeststoffe und Biogas sind die Endprodukte des anaeroben Abbaues von Schlämmen. Daneben entstehen beim Abbau auch gelöste anorganische Verbindungen wie HPO₄-, NH₄+ und H₂S (Schlammwasser).

Dem Aufschluss der Feststoffe/großen Moleküle des Schlammes kommt eine Schlüsselrolle zu: die Hydrolyse der Rohschlammfeststoffe stellt den geschwindigkeitsbestimmenden Teilschritt des anaeroben Abbauprozesses dar, siehe Bild 1. Nach den gegenwärtigen Vorstellungen greifen von den fermentierenden Mikroorganismen produzierte Exoenzyme das partikuläre Material an und lösen Monomere heraus. Die Herstellung der Exoenzyme ist für die Mikroorganismen energetisch sehr aufwendig und vermindert den Energiegewinn und damit das Zellwachstum. Die Hydrolyse ist unabhängig davon, ob sie aerob oder anaerob erfolgt, sie wird von denselben Bakterien bewerkstelligt [2].

2. Technische Grenzen der Schlammfaulung

Bei der Faulung von Rohschlamm werden in der Praxis Gasausbeuten von etwa 700 bis 1000 NL/kg oTR_{abgebaut} erzielt, oder anders ausgedrückt: 400 bis 500 NL/kg oTR_{zugeführt}. Wegen des höheren Fettanteils erzeugt Primärschlamm alleine mit ca. 500 bis 600 NL/kg oTR_{zugeführt} etwa doppelt so viel Biogas wie Überschussschlamm mit ca. 250 bis 300 NL/kg oTR_{zugeführt}.

Vergleicht man die oben genannten Werte der Biogasausbeute von ca. 1000 NL/kg oTR_{abgebaut} mit denjenigen der Zufuhr bezogenen von ca. 500 NL/kg oTR_{zugeführt}, so ist leicht zu erkennen, daß offenbar nur etwa die Hälfte der organischen Fraktion des Schlammes mikrobiologisch verwertet und in Biogas umgesetzt wird. In der Tat beobachten wir in der Praxis bei üblichen Faulzeiten lediglich Abbaugrade zwischen 40 und 55% für kommunale Schlämme. Der wesentliche Grund für diese sogenannte technische Faulgrenze ist in der komplexen Zusammensetzung des Klärschlammes zu suchen, insbesondere im Hinblick auf die partikulären organischen Komponenten wie Bakterienzellen, die enzymatisch/biologisch in vertretbaren Zeiträumen nicht abbaubar sind.

Man kann sich demnach vorstellen den Prozess der Schlammstabilisierung erheblich zu intensivieren, wenn man dafür sorgt, dass die gesamte organische Fraktion biologisch verfügbar gemacht wird. Die Frage läuft dann darauf hinaus zu untersuchen unter welchen Bedingungen eine Vorbehandlung des Rohschlammes Sinn macht, um die Bioverfügbarkeit der organischen Fraktion zu erhöhen. Bioverfügbar machen heißt hier: Auflösung der organischen Feststoffe und Reduzierung der Größe der abzubauenden Moleküle. Man ersetzt quasi den langsamen Schritt der enzymatischen Schlammhydrolyse durch eine chemische, thermische oder mechanische Vorbehandlung. Man spricht auch von Desintegration des Schlammes und versucht so die traditionelle "technische Faulgrenze" zu überwinden. Gelingt dies, werden der anaerobe Abbau intensiviert, die zu entsorgenden Schlammengen reduziert und mehr Biogas erzeugt.

3. Zielsetzung der Desintegration

Der Einfluß des Zellaufschlusses auf den anaeroben biologischen Schlammabbau wurde in jüngster Zeit in wissenschaftlichen und praktischen Arbeiten untersucht. Der Nachweis ist inzwischen erbracht, dass die Unterstützung bzw. Substitution der biologischen Schlammhydrolyse zu einem beschleunigten und weitergehenden Abbau führen kann. Verfahren zum Aufschluss des Zellmaterials können mechanischer, chemischer oder thermischer Art sein (Tabelle 1).

Tabelle 1: Verfahren zur Klärschlammdesintegration

Einteilung	Verfahren /Apparate				
Mechanisch	Rührwerkskugelmühle				
	Hochdruckhomogenisator				
	Lysat-Zentrifuge				
	Prallstrahlverfahren				
	Hochleistungspulstechnik				
	Ultraschalltechnik				
Chemisch	Säurezugabe				
	Laugezugabe				
	Zusatz chemischer Oxidationsmittel				
Thermisch	Erhitzung des Schlammes				

Im Laufe der Zeit hat sich herausgestellt, dass über die eigentliche Verbesserung der anaeroben Stabilisierung hinaus weitere Zielsetzungen mit der Anwendung von Desintegrationsverfahren verfolgt werden können. Wir nennen zusammen gefasst folgende Ziele der Desintegration:

- das Freisetzen von Zellinhaltsstoffen, um die Prozesse der aeroben und anaeroben Schlammstabilisierung zu intensivieren
- die Bekämpfung von Blähschlamm und Schaumproblemen
- die Bereitstellung von internen H-Quellen für die Denitrifikation

Schwerpunkt dieses Artikels ist die Darstellung der mechanischen Verfahren, weil sich hier neue Entwicklungen abzeichnen. ATV/DVWK hat die Arbeitsgruppe AK-1.6 "Klärschlammdesintegration" eingerichtet, welche auch jüngst zwei ausführliche Arbeitberichte veröffentlicht hat [3], [4]. Der Referent bzw. seine Mitarbeiter sind in dieser Arbeitsgruppe aktiv. Die folgenden Ausführungen greifen deshalb auch auf diese Erfahrungen zurück.

Chemische und thermische Verfahren zur Schlammdesintegration sind schon länger im praktischen Einsatz - mit unterschiedlichem Erfolg. Es kann auch auf umfangreiche Literatur zurückgegriffen werden. Hier folgt eine Darstellung in Kürze.

Chemische Aufschlussverfahren

Zur chemischen Hydrolyse werden dem Schlamm Säuren [5], [6], Laugen [7] oder Oxidationsmittel [8], [9] zugesetzt. Der Aufschluss mit Säuren oder Laugen beruht auf chemischen Umsetzungen des Zellwandmaterials verbunden mit einem osmotischen Schock. Wird nach einer Säure- oder Laugenbehandlung der desintegrierte Schlamm biologisch stabilisiert, ist in der Regel eine chemische Neutralisation notwendig. Aufgrund der damit einhergehenden Aufsalzung sind Hemmeffekte bei der anaeroben Fermentation nicht auszuschließen. Die Anwendungen sind daher in erster Linie auf industrielle Anlagen begrenzt, bei denen große Mengen an Säuren oder Laugen als Abfallprodukt anfallen. Beim Einsatz von Oxidationsmitteln erfolgt eine partielle Oxidation von

Beim Einsatz von Oxidationsmitteln erfolgt eine partielle Oxidation von Zellwandbestandteilen. Als Oxidationsmittel eignen sich Ozon, Wasserstoffperoxid oder eine Kombinationen aus beiden.

Thermische Aufschlussverfahren

In den vergangenen drei Jahrzehnten wurden auf dem Gebiet der thermischen Schlammbehandlung umfangreiche Erfahrungen gesammelt [10], [11], [12], [13]. Gegenüber den mechanischen Verfahren und der Ozonbehandlung benötigt die thermische Desintegration deutlich mehr Energie. Hierbei handelt es sich jedoch um thermische Energie. die zu günstigeren Preisen zur Verfügung steht als die für die mechanischen Verfahren notwendige elektrische Energie. Im Vergleich zur mechanischen Schlammdesintegration werden längere Behandlungszeiten und somit größere Reaktoren benötigt. Der Eintrag der Wärmeenergie erfolgt entweder indirekt über Wärmetauscher oder durch das Einblasen von Dampf in den Schlamm. Bei direkter Dampfinjektion werden die z.T. erheblichen Betriebsprobleme vermieden, welche durch Verkrustung und Korrosion Wärme tauschender Flächen verursacht werden. Mit steigender Temperatur wird grundsätzlich ein höherer Schlammaufschluss erzielt. Dies geht jedoch mit einer möglichen Bildung von geruchsintensiven sowie schwer abbaubaren Verbindungen einher, Schlammwasser zurück in den Kläranlagenzulauf geleitet werden. Auch die Entstehung von Hemmstoffen ist nicht auszuschließen, was unter Umständen eine irreversible Hemmung des Faulprozesses zur Folge haben kann [14]. Die Bildung von Melanoiden wird bereits im Temperaturbereich 100°C beobachtet um [15]. Aus der thermischen Schlammkonditionierung ist bekannt, dass bei Temperaturen um 200°C sogar hochtoxische Dioxine produziert werden [16]. Da die Reaktionskinetik für die Bildung dieser Hemmstoffe noch nicht eindeutig geklärt ist, bleibt abzuwarten, ob durch eine Veränderung der Verfahrensbedingungen die Probleme zufriedenstellend gelöst werden können.

4. Begriffe und Definitionen der mechanischen Desintegration

Unter Klärschlammdesintegration ist die Zerkleinerung von Feststoffen des Klärschlammes (Biofeststoffe) durch die Einwirkung äußerer Kräfte zu verstehen. Die Einwirkung der Kräfte führt sukzessive zu einer Auflösung der Flockenstruktur des Schlammes und zu einem Aufschluss (Zerstörung) der im Schlamm enthaltenen Mikroorganismen. Bei geringen Energieeinträgen findet vornehmlich eine Auflösung der Schlammflocken ("Vereinzelung der Mikroorganismen") statt, bei höheren Energieeinträgen eine Zerstörung der Zellwände und damit ein Aufschluss der Mikroorganismen.

Auflösung der Flockenstruktur

Die Bindungsenergie zwischen den einzelnen Organismen in einer Schlammflocke ist deutlich geringer als die zur Zerstörung der Zellwand benötigte Energie. Daher werden zunächst die Schlammflocken in einzelne Partikel oder kleinere Partikelverbände zerlegt ohne daß eine Beschädigung der Mikroorganismenzellen hervorgerufen wird. Man kann im Mikroskop gut beobachten, wie die durch Biopolymere miteinander verketteten Organismen voneinander getrennt und "vereinzelt" werden. Als Folge davon findet eine deutliche Reduzierung der mittleren Partikelgröße der Schlammsuspension statt. Der Energieeinsatz für diesen Effekt ist gering.

Zellaufschluss

Bei intensiverer energetischer Beanspruchung werden vermehrt Zellwände beschädigt oder aufgebrochen. Wegen des unterschiedlichen Aufbaus der Zellwände von Organismen ist der Widerstand der Zellen gegen diese äußeren Krafteinwirkungen sehr verschieden ausgeprägt. So lassen sich größere Mikroorganismen (z.B. Ciliaten) bereits durch geringe Scherkräfte schädigen, der Aufschluss von Bakterien, insbesondere von gram-positiven, ist hingegen mit erheblich höherem Energieaufwand verbunden. Bei der Beurteilung des Verhaltens von Mikroorganismen gegenüber Aufschlusswirkung kann auf Erfahrungen zurückgegriffen werden, die bei vergleichbaren Prozessen in den Bereichen Biologie, Biotechnologie und Bioverfahrenstechnik gesammelt wurden. Siehe dazu die Skizze in Bild 2.

Aufschlussgrad

Es ist nützlich eine allgemein akzeptierte Definition des Parameters "Aufschlussgrad" zu haben, damit Versuchsergebnisse vergleichbar werden. Theoretisch gilt, dass der Aufschlussgrad das Verhältnis der Zahl zerstörter Zellen zur Gesamtzahl der Zellen darstellen soll. Das Auszählen von Zellen in der Schlammsuspension ist jedoch nicht praktikabel. Klärschlammdesintegration bewirkt die Freisetzung organischer Zellinhaltsstoffe. Man postuliert, dass ein direkter Zusammenhang zwischen der Zerstörung der Zellen und der Freisetzung organischer Substanz besteht. Daraus abgeleitet bestimmt man in der Praxis den Aufschlussgrad von Schlammsuspensionen mit Hilfe von Analysen des Chemischen Sauerstoffbedarfs oder der Sauerstoffverbrauchsrate. Das Verhältnis CSBgelöst zum Gesamt-CSB der Schlammsuspension ermöglicht eine Beurteilung der Aufschlusswirkung. Dieser Wert sagt jedoch noch nichts darüber aus, welche maximale CSB-Freisetzung möglich ist, was der Fall ist, wenn alle organischen Zellen in der Suspension zerstört sind. In Deutschland hat man sich auf ein Referenzverfahren geeinigt, das eine "maximal mögliche" Freisetzung an Zellinhaltsstoffen berücksichtigt. Diese "maximale" Freisetzung an CSB wird durch 10-minütiges Erhitzen einer mit 1-molarer Natronlauge versetzten Schlammprobe auf 90°C erreicht. Der freigesetzte CSB wird bestimmt im membranfiltrierten Überstand (0,45 µm) nach zehnminütiger Zentrifugation bei mindestens 10.000 g. Der Aufschlußgrad A_{CSB} wird also definiert als Verhältnis der CSBdurch mechanische Behandlung zu chemischen Referenzaufschlusses [3]:

$$A_{CSB} = [(CSB_{desint} - CSB_u) / (CSB_{NaOH} - CSB_u)] * 100 [%]$$
 (4.1)

wobei CSB_{desint} der Chemische Sauerstoffbedarf im Schlammwasser des

mechanisch desintegrierten Schlammes, [mg/L],

CSB_u der Chemische Sauerstoffbedarf im Schlammwasser des

unbehandelten Schlammes, [mg/L],

CSB_{NaOH} der Chemische Sauerstoffbedarf im Schlammwasser des

chemisch desintegrierten Schlammes, [mg/L].

Die Mikroorganismen des Überschussschlammes verbrauchen Sauerstoff bei ihren Stoffwechselvorgängen. Diese Stoffwechselaktivität kann über die Messung der Sauerstoffverbrauchsrate quantifiziert werden. Durch den Aufschluss der Zellen verlieren die Mikroorganismen ihre Stoffwechseleigenschaften und damit die Fähigkeit Sauerstoff zu verwerten. Auf der Basis der Sauerstoffverbrauchsrate lässt sich nun ebenfalls ein Aufschlussgrad definieren. Dieser Aufschlussgrad As setzt die Sauerstoffverbrauchsrate des desintegrierten Schlammes ins Verhältnis zu der des unbehandelten Schlammes. Bei Inaktivierung aller Mikroorganismen ist kein Sauerstoffverbrauch mehr meßbar, und der Aufschlussgrad As erreicht einen Wert von 100% [17].

5. Mechanische Aufschlussverfahren

Die zum Aufschluss notwendige mechanische Energie kann in Form von Druck-, Translations- oder Rotationsenergie zur Verfügung gestellt werden. Jeder feste Körper - hier die Zelle - leistet Widerstand gegen eine mechanische Verformung. Es kommt zur Zerstörung, wenn die Zerreißfestigkeit des Materials überschritten wird. Im folgenden werden die wichtigsten mechanischen Desintegrationsverfahren dargestellt, die in den bisherigen Untersuchungen zum Einsatz gekommen sind.

Rührwerkskugelmühle

Die Rührwerkskugelmühle (Bild 3) besteht aus einem zylindrisch oder konisch ausgebildeten Mahlbehälter, der wahlweise horizontal oder vertikal angeordnet ist. In den Mahlkörper ragt ein motorgetriebenes Rührelement mit Rührscheiben. Die Umfangsgeschwindigkeit der Scheiben liegt bei 8 bis 20 m/s. Der Mahlraum ist durch eine Kugelschüttung, die Mahlkörper, ausgefüllt. Die über die Motorwelle angetriebenen Rührscheiben versetzen die Mahlkugeln in eine Rotationsbewegung und eine Relativbewegung zueinander. Während des Durchgangs der Suspension, die den Mahlraum durchströmt, werden die hierin enthaltenen Feststoffe durch die Mahlkugeln beansprucht. Die Mahlkörper bestehen aus verschleißfestem Material (Hartglas, Keramik, Stahl o. ä.) und haben Durchmesser zwischen 0,1 bis 2,0 mm. Zur Mahlgut-Mahlkörper-Separation können Zentrifugalabscheider oder Abtrennvorrichtungen wie Trennspalt, Ringspalt oder Siebpatrone eingesetzt werden [18].

Hochdruckhomogenisator

Es handelt sich um Geräte von einfachem Aufbau, die aus zwei Hauptkomponenten bestehen, einer mehrstufigen Hochdruckpumpe und einem Homogenisierventil, Bild 4. Die Hochdruckpumpe verdichtet die Suspension auf Drücke von mehreren hundert bar und ermöglicht je nach Maschinengröße Volumenströme von 40 Litern bis zu mehreren Kubikmetern pro Stunde. Das Homogenisierventil stellt die eigentliche Aufschlußeinheit dar. Der stationäre Ventilsitz und der verstellbare Ventilkörper bilden den Homogenisierspalt, dessen Weite durch eine äußere Kraft eingestellt werden kann. Die verdichtete Suspension tritt durch den Spalt aus, wird auf hohe Geschwindigkeiten beschleunigt und entspannt. Im Ventilspalt wird der Dampfdruck der Flüssigkeit unterschritten. Es entstehen Dampfblasen (Kavitationsblasen). Die Kavitationsblasen kollabieren und induzieren energiereiche Schubspannungsfelder, in denen die Zellen aufgeschlossen werden. Schließlich trifft die Suspension auf den Prallring auf und verlässt die Maschine. Der Homogenisierdruck stellt den wichtigsten variierbaren Parameter dar. Mit steigendem Druck nimmt auch die für die

Zerkleinerung zur Verfügung stehende Energie zu und entsprechend verbessert sich das Aufschlussergebnis. Bei Drücken von mehreren hundert bar werden Bakterien weitgehend aufgeschlossen [19].

Lysat-Zentrifuge

Die Desintegration des Schlammes erfolgt hierbei mit einem speziellen Schlagwerk, das in die Eindickzentrifuge eingebaut ist, Bild 5. Die Lysiereinrichtung ist bei vorhandenen Maschinen nachrüstbar. Die Zellzerstörung erfolgt nach der Zentrifugation/Eindickung, somit wird das Zentrat nicht belastet. Nach Meinung der Hersteller erfolgt die Zellzerstörung durch die Ausnutzung dreier Effekte:

- 1. Verzögerungskraft aufgrund der Verminderung der vorhandenen kinetischen Energie (Prallkräfte infolge Aufpralls der Partikel im Zentrifugen-Rahmen)
- 2. Prallwirkungen aufgrund einer Schlagwerkskonstruktion, in der die aus der Zentrifuge abgeworfenen, noch bewegten Partikel abgebremst werden
- 3. Scherwirkung in obiger Konstruktion aufgrund der Zentrifugendrehzahl im Bereich von 1500 bis 3000/min.

Prallstrahlverfahren

Bei der Prallstrahltechnik wird eine Suspension mittels einer Hochdruckpumpe auf Drücke von 20 bis mehreren hundert bar verdichtet und dann durch eine Düse entspannt. Nach dem Durchtritt durch die Düse wird die Suspension im Freistrahl auf

eine Prallplatte geführt, wo sie mit hoher Geschwindigkeit auftrifft, Bild 6. Die Beanspruchung erfolgt sowohl durch Kavitation im Bereich der Düse als auch durch die schlagartige Verzögerung auf der Prallplatte. Im Staupunkt des Flüssigkeitsstrahls und in seiner näheren Umgebung treten maximale Druckkräfte und Schubspannungen auf, die für die Desintegration der Partikel verantwortlich sind. Die Suspension wird mehrere Male rezirkuliert, um die Mikroorganismen einer ausreichenden mechanischen Belastung auszusetzen. In anderen Worten, je öfter die Organismen auf die Prallplatte aufschlagen, um so größer ist die Wahrscheinlichkeit, dass die Zellwand aufbricht. Diese Rezirkulation wird als Aufprallhäufigkeit ausgedrückt [20]. Die wichtigsten Optimierungsparameter des Prallstrahlverfahrens sind der Kompressionsdruck, die Düsenform, der Düsen- bzw. Strahldurchmesser und die Aufprallhäufigkeit [21].

Hochleistungspulstechnik

Hochleistungspulstechnik ist die Erzeugung und Nutzung von elektrischen Durchschlägen in flüssigen oder festen Materialien, Bild 7. Derartige Durchschläge erzeugen Druckwellen (Schockwellen), deren Höhe über eine elektrische Impulsquelle gesteuert werden kann [22]. Für den Klärschlammaufschluss wird das sogenannte elektro-hydraulische Verfahren verwendet. Zwei Elektroden befinden sich in der elektrisch schlecht leitenden Klärschlammsuspension und sind mit einer gepulsten Energieversorgungsanlage (EVA) verbunden. Die EVA besteht aus einer Ladeeinrichtung und Impulskondensatoren. Beim Zuschalten der EVA führen Ausgangsspannungen von einigen 10 kV zum elektrischen Durchschlag zwischen den Elektroden. Im Medium entstehen Plasmakanäle und Druckwellen, wodurch die Schlammpartikel zerkleinert werden.

Ultraschalltechnik

Als Ultraschall werden Schallwellen bezeichnet, die sich aufgrund ihrer hohen Frequenz (>20 kHz) außerhalb des menschlichen Hörbereichs befinden. Der Ultraschall breitet sich in Form von Longitudinalwellen aus und bewirkt eine periodische Verdichtung und Entspannung im Medium. Der entscheidende Vorgang bei der Desintegration von Klärschlamm ist die durch Ultraschall hervorgerufene Kavitation. Unter Kavitation wird allgemein die Bildung von mikroskopisch kleinen Hohlräumen in einer Flüssigkeit verstanden. Die Hohlräume entstehen vorzugsweise an Instabilitätsstellen, wenn der Dampfdruck der Flüssigkeit in der Entspannungsphase unterschritten wird, und die

Flüssigkeit dadurch "aufreißt". Suspendierte Partikel oder Grenzflächen wirken als Instabilitätsstellen. Sie sind sogenannte Kavitationskeime. Die Blasen pulsieren in Resonanz mit dem Ultraschallfeld, wobei ihre Größe zunimmt. Bei Erreichen einer kritischen Größe fallen sie unter Einwirkung des äußeren Druckes schlagartig zusammen – ein Vorgang, der als Blasenimplosion oder Blasenkollaps bezeichnet wird. Infolge der Implosion treten in der Flüssigkeit sehr schnelle Strömungen ("Jet-streams") auf, die zu hohen Scherkräften führen. Im Inneren der kollabierenden Blase, dem sogenannten "hot spot", kommt es zu sehr hohen Temperaturen und Drücken (mehrere tausend Grad Celsius, mehrere hundert bar), Bild 8. Vor allem die hohen Scherkräfte beim Blasenkollaps führen zur Zerkleinerung von Makromolekülen und zum Aufschluss von Mikroorganismen [23], [24]. Die höchste Effizienz wird bei der Desintegration mit niederfrequentem Ultraschall im Bereich 20 - 50 kHz erzielt. Die Erzeugung von Ultraschall erfolgt in der Regel mit piezokeramischen Wandlersystemen. Stabschwinger und Flächenschwinger unterschieden. Je nach Bauweise werden unterschiedlich können die Reaktorräume konstruiert Ultraschallreaktoren haben in der Regel einen großen, frei durchströmten Innenraum, so dass auch bei der Behandlung von Rohschlamm keine Verstopfungen auftreten.

6. Intensivierung des anaeroben Schlammabbaues

Die Schlammbehandlung und -entsorgung stellt einen wesentlichen Kostenfaktor auf einer Kläranlage dar. Diese Kosten können gesenkt werden, wenn es gelingt, den anfallenden Klärschlamm so zu behandeln, dass der zu entsorgende Rest minimiert wird. Durch Anwendung der Schlammdesintegration kann der anaerobe Abbauprozess beschleunigt werden, d.h. die pro Zeiteinheit abgebaute Rohschlammmasse wird signifikant gesteigert. Die eingangs genannten Abbaugrade können in wesentlich kürzeren Verweilzeiten erreicht, der Abbaugrad und die Biogasproduktion erhöht werden. Oder anders herum: bei unveränderten Verweilzeiten findet ein weitergehenderer Abbau der organischen Feststoffe statt mit entsprechend höherer Faulgasproduktion. Diese Wirkungen wurden in zahlreichen Untersuchungen nachgewiesen. Es hat sich herausgestellt, dass die deutlichsten Effekte bei der Desintegration von Überschussschlämmen erreicht werden. Bei langen Faulzeiten fallen die durch die Desintegration erreichten Vorteile (höhere Abbaugeschwindigkeit) weniger stark aus. Die Klärschlammdesintegration bietet sich daher als Alternative an zur Erweiterung einer überlasteten konventionellen Schlammfaulung (Faulzeiten < 15 d) oder zur Steigerung der Faulgasproduktion bei gleichzeitiger Minimierung der zu entsorgenden Schlammfeststoffmasse.

Im hergebrachten Sinne ist es nicht das primäre Ziel der Stabilisierung eine maximale Biogasproduktion zu erzielen. Im Vordergrund steht (das Wort sagt es) die Stabilisierung des unangenehmen, stark fäulnisfähigen Schlammes. Die Produktion von Biogas wurde bisher eher als angenehmer Nebeneffekt angesehen. Heute lohnt es durchaus darüber nachzudenken, unter welchen Voraussetzungen eine Steigerung der Gasproduktion sinnvoll ist, weil mit dem Biogas ein regenerierbarer Energieträger zur Verfügung steht.

Bisherige Untersuchungen zum anaeroben Abbau desintegrierter Klärschlämme reichen vom Labormaßstab bis hin zum probeweisen großtechnischen Betrieb. Bei den großtechnischen Tests mangelt es meist an gründlichen (parallel durchgeführten) Referenzversuchen. Oftmals wird als Vergleich der konventionelle Schlammabbau einer zurückliegenden Phase herangezogen. Die ständigen Veränderungen der Klärschlammeigenschaften und/oder des Faulbehälterbetriebes können dann zu Fehlinterpretationen der Meßdaten führen. Es verwundert deshalb nicht, dass die bisher veröffentlichten Ergebnisse divergieren. Im praktischen Betrieb der Schlammbehandlung ist es in der Regel auch schwierig exakte Stoffbilanzen zu erstellen. Über die ersten full-scale Anwendungen wird in einem separaten Beitrag dieser Veranstaltung berichtet [25].

Es ist wichtig den Einsatz der Desintegration und ihre Wirkungen gewissermaßen im Gesamtbild der Abwasser- und Schlammbehandlung auf einer Kläranlage zu betrachten, um alle potentiellen Auswirkungen auf den Betrieb zu berücksichtigen. Dazu gehören:

- Möglicherweise erhöhter Verbrauch an Flockungsmitteln bei der Schlammentwässerung
 [26]
- Erhöhung der Konzentration von CSB, N und P im Schlammwasser verbunden mit einer erhöhten Rückbelastung der Kläranlage in der Größenordnung von 10% [27].

7. Vergleich der Aufschlussverfahren

• Tabelle 2: Betriebsverhalten der mechanischen Verfahren zur Desintegration kommunalen Klärschlammes [4]

	Rührwerks-	Hochdruck	Lysat-	Prallstrahl-	Hoch-	Ultraschall-
	kugelmühle	homogeni-	zentrifuge	verfahren	leistungs-	technik
		sator			pulstechnik	
Betriebserfahrung						
- Labor	++	++		+	+	++
- Pilotanlage	++	++			-	++
- großtechnischer						
Versuchsbetrieb	+	-	+		- ²⁾	+
- Dauerbetrieb	-		+			-
Stabilität gegenüb.						
Störstoffe	+/- 1)		+	-	++	++
Technischer						
Entwicklungsstand						
für den Einsatz auf	+		+	-	-	+
Kläranlagen						

^{++:} sehr viel bzw. sehr gut, +: viel bzw. gut, -: wenig bzw. schlecht, --: sehr wenig bzw. sehr schlecht

Betriebstechnisch weisen die verschiedenen mechanischen Aufschlussverfahren Unterschiede auf. Beim Hochdruckhomogenisator und dem Prallstrahlverfahren ist wegen der engen Strömungsquerschnitte die Anfälligkeit zu nennen gegenüber groben und faserigen Stoffen im Klärschlamm. Oftmals sind diese Geräte nur nach einer aufwendigen separaten Vorabtrennung grober und faseriger Bestandteile zu betreiben. Sowohl die Hochleistungspuls- als auch die Ultraschalltechnik haben diese Nachteile nicht wegen des großen Durchmessers des jeweiligen Reaktorraumes. In Tabelle 2 sind die Betriebserfahrungen der verschiedenen mechanischen Verfahren zusammengestellt.

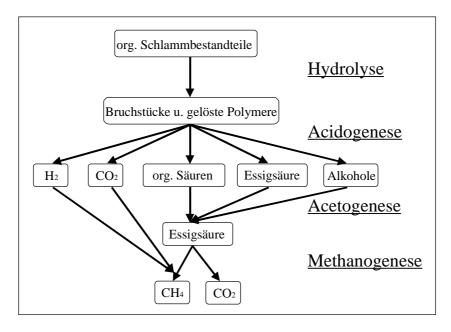
^{1) +} bei Mahlkugelabtrennung im Fliehkraftfeld, - bei Abtrennung über Sieb

²⁾ für die USA liegen einige Versuchsergebnisse zur niederenergetischen Behandlung vor

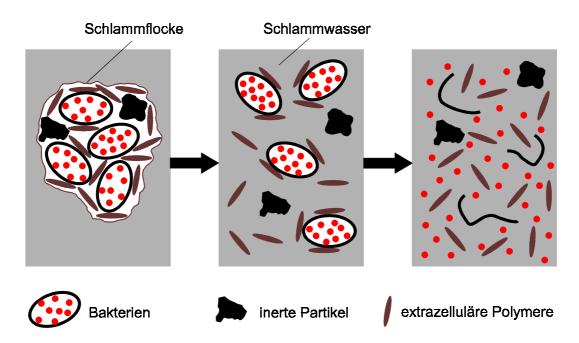
8. Bekämpfung von Blähschlamm

Mit der mechanischen Zerkleinerung von Blähschlämmen kann man Fadenstrukturen aufbrechen. Damit wird der voluminösen Flocke die stützende Struktur aus fädigen Organismen genommen, Gasblasen werden freigesetzt und kleinere Bruchstücke der Flocke können sedimentieren. Bisher existieren erst wenige Arbeiten über die mechanische Behandlung von Blähschlämmen, allerdings belegen sowohl Labortests als auch Tests im technischen Maßstab, dass durch mechanische Behandlung von Bläh- und Schwimmschlämmen Betriebsstörungen vermindert bzw. beseitigt werden können. Es besteht eine Korrelation zwischen der Flockenstruktur und dem Absetzverhalten von Blähschlamm [28]. Kurze Ultraschallbehandlung führt zum Abtrennen der aus der Flocke herausragenden Fäden, wodurch der Schlammindex gesenkt wird, Bild 9. Ein Zellaufschluss von Mikroorganismen findet dabei noch nicht statt. Bei längeren Beschallzeiten werden auch kompakte Flocken zerstört und Mikroorganismen aufgeschlossen. Der optimale Effekt wird daher mit einer genau dosierten Behandlung erreicht.

Bei der Einleitung fädiger Schlämme in den Faulbehälter kommt es häufig zu Problemen durch Schaumbildung. Untersuchungen im Labor- und Pilotmaßstab zeigten, daß die Schaumbildung durch eine mechanische Desintegration der fädigen Schlämme dauerhaft vermindert werden kann [29], [30], [31].


<u>Literatur</u>

- [1] Malina, J.F., Pohland F.G. (1992). Water quality management library vol. 7: design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Publishing Company, Lancaster, USA.
- [2] Roediger, H., Roediger, M., Kapp, H. (1990). Anaerobe alkalische Schlammfaulung. Oldenbourg Verlag, München, 4. Auflage.
- [3] Abwassertechnische Vereinigung (2000). Arbeitsbericht der ATV-Arbeitsgruppe 3.1.6: Verfahren und Anwendungsgebiete der mechanischen Klärschlammdesintegration. Korrespondenz Abwasser, Heft 4, 47: 570-576.
- [4] Abwassertechnische Vereinigung (2001). Arbeitsbericht der ATV-DVWK-Arbeitsgruppe AK-1.6: Verfahrensvergleich und Ergebnisse der mechanischen Klärschlammdesintegration. Korrespondenz Abwasser, Heft 3, 48: 393-400.
- [5] Gaudy, A.F., Yang, P.Y., Obayashi, A.W. (1971). Studies on the total oxidation of activated sludge with and without hydrolytic pretreatment. Journal WPCF, Heft 1, 43: 40-54.
- [6] Mönnich Jung, C. (1994). Erfahrungen mit der Schlammhydrolyse in einer großtechnischen Anwendung. *In*: Hahn, H.H. (Hrsg.) 8. Karlsruher Flockungstage: Klärschlamm Ressource oder kostenintensiver Abfall?, Institut für Siedlungswasserwirtschaft, Universität Karlsruhe: 125-138.
- [7] Chiu, Y.C., Chang, C.N., Huang, W.S., Chao, A.C. (1997). Effect of ultrasonic and alkaline pretreatment on waste activated sludge characterization. Journal of the Chinese Institute of Environmental Engineering, Heft 1, 7: 25-33.
- [8] Yasui, H., Shibata, M. (1994). An innovative approach to reduce excess sludge production in the activated sludge process. Wat. Sci. Tech., Heft 9, 30: 11-20.


- [9] Scheminski, A., Krull, R., Hempel, D.C. (1999). Oxidative treatment of digested sewage sludge with ozone. *In*: IAWQ-specialised conference on disposal and utilisation of sewage sludge: Treatment methods and application modalities, Athen: 241-248.
- [10] Haug, R.T., LeBrun, T.J., Tortorici, L.D. (1983). Thermal pretreatment of sludges a field demonstration. Journal WPCF, Heft 1, 55: 23-34.
- [11] Stuckey, D.C., McCarty, P.L. (1984). The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Wat. Res. 18 (11): 1343-1353.
- [12] Pinnekamp, J. (1987). Steigerung der Leistungsfähigkeit der anaeroben Klärschlammstabilisierung durch eine thermische Vorbehandlung des Schlammes. Gewässerschutz, Wasser, Abwasser Aachen, Band 96.
- [13] Kepp, U., Machenbach, I., Weisz, N., Solheim, O.E. (1999). Enhanced stabilisation of sewage sludge through thermal hydrolysis three years experience with full scale plant. *In*: IAWQ-specialised conference on disposal and utilisation of sewage sludge: Treatment methods and application modalities, Athen: 161-168.
- [14] Haug, R.T., Stuckey, D.C., Gossett, J.M., McCarty P.L. (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. Journal WPCF, 50: 73-85.
- [15] Schormüller, J. (1974). Lehrbuch der Lebensmittelchemie. Springer Verlag Berlin, 2. Auflage.
- [16] Abendt, R., Balzer, W., Packebusch, B., Steinle-Silva, I. (1994). Die Schadstoffbelastung des Nürnberger Klärschlamms und der Einfluss der thermischen Schlammkonditionierung nach dem Porteous-Verfahren auf die Konzentration an Schwermetallen, PCB und PCDD/F. Korrespondenz Abwasser, Heft 8, 41: 1350-1355.
- [17] Lehne, G., Müller, J. (1999). The influence of energy consumption on the sewage sludge disintegration. *In*: Tiehm, A., Neis, U. (Hrsg.) Ultrasound in environmental engineering. TUHH Reports on Sanitary Engineering, 25, Technische Universität Hamburg-Harburg: 205-215.
- [18] Stehr, N., Müller, J. (1998). Gestaltung von Rührwerkskugelmühlen für den Klärschlammaufschluss. *In*: Müller, J., Dichtl, N., Schwedes, J. (Hrsg.) Klärschlammdesintegration Forschung und Anwendung. Veröffentlichung des Instituts für Siedlungswasserwirtschaft, Heft 61, Technische Universität Braunschweig: 19-29.
- [19] Pittroff, M. (1993). Mechanischer Aufschluss von Mikroorganismen im Apparatevergleich zwischen Rührwerkskugelmühle und Hochdruckhomogenisator. Dissertation, TH Karlsruhe.
- [20] Alshaabi, A. (1995). Mechanischer Aufschluss überschüssiger Biomasse mit anaerober Weiterbehandlung der erzeugten Biosuspension zur Biogasproduktion. Dissertation, TU-Berlin.
- [21] Choi, H.B., Hwang, K.Y., Shin, E.B. (1997). Effects on anaerobic digestion of sewage sludge pretreatment. Wat. Sci. Tech., Heft 10, 35: 207-211.
- [22] Weise. T.H.G.G.. Juna. M. (1998).Klärschlammbehandlung mit der Hochleistungspulstechnik. Müller, Dichtl, Schwedes, In: J., N.. J. (Hrsg.) Klärschlammdesintegration Forschung und Anwendung. Veröffentlichung des Instituts für Siedlungswasserwirtschaft, Heft 61, Technische Universität Braunschweig: 75-82.

- [23] Tiehm, A., Nickel, K., Zellhorn, M., Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Wat. Res. 35 (8): 2003-2009.
- [24] Neis, U., Nickel, K., Tiehm, A. (2001). Ultrasonic disintegration of sewage sludge for enhanced anaerobic biodegradation. *In*: Mason, T., Tiehm, A. (Hrsg.) Advances in Sonochemistry, Band 6, Elsevier Science, Niederlande: 59-90.
- [25] Nickel, K., Neis, U. (2003). Desintegration von Klärschlamm eine wirtschaftliche Alternative? Kolloquium und Fortbildungskurs zur Abwasserwirtschaft. Technische Universität Hamburg-Harburg, 9. bis 11. September 2003.
- [26] Kopp, J., Müller, J., Dichtl, N., Lehne, G., Schwedes, J., Battenberg, S., Näveke, R., Scheminski, A., Krull, R., Hempel, D.C. (1997). Anaerober Abbau mechanisch aufgeschlossener Klärschlämme. *In*: Veröffentlichungen des Zentrums für Abfallforschung der Technischen Universität Braunschweig, Heft 12: 77-97.
- [27] Nickel, K. (1999). Improving anaerobic degradation by ultrasonic disintegration of sewage sludge. *In*: Tiehm, A., Neis, U. (Hrsg.) Ultrasound in Environmental Engineering. TUHH Reports on Sanitary Engineering, 25, Technische Universität Hamburg-Harburg: 217-231.
- [28] Tiehm, A., Nickel, K., Neis, U. (1998). Verbesserte Sedimentation von Blähschlamm durch Ultraschall. *In:* Hamburger Berichte zur Siedlungswasserwirtschaft, Heft 22: 11. Fachtagung Weitergehende Abwasserreinigung als Beitrag zum Schutz von Nord- und Ostsee.
- [29] Müller, J., Lehne, G., Pieper, P., Dichtl, N. (1999). Mechanische Zerkleinerung von Blähund Schwimmschlämmen. Wasser Abwasser Praxis, Heft 6: 25-31.
- [30] Barjenbruch, M., Hoffmann, H., Tränckner, J. (1999). Verminderung des Schäumens von Faulbehältern durch Vorbehandlung des Überschussschlammes. *In*: 4. GVC-Abwasserkongreß, Preprints Band 2: 857-861.
- [31] Wünsch, B., Neis, U. (2002). Bläh- und Schwimmschlammbekämpfung mittels Ultraschall. Hamburger Berichte zur Siedlungswasserwirtschaft, 40. Fachtagung Weitergehende Abwasserreinigung zum Schutz der Nord- und Ostsee.

Anhang: Bilder

<u>Bild 1:</u> Schema des mehrstufigen anaeroben Abbaus organischer Rohschlammbestandteile [1]

<u>Bild 2:</u> Schematische Darstellung der Flocken- (Bild Mitte) und Zellzerstörung (Bild rechts) von biologischen Schlämmen durch mechanische Behandlung

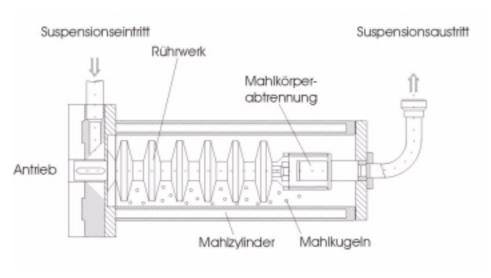


Bild 3: Schematische Darstellung einer Rührwerkskugelmühle

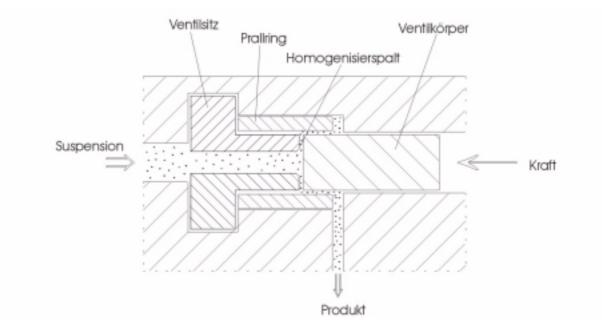
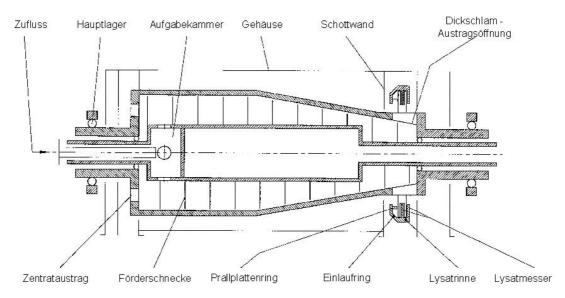



Bild 4: Schematische Darstellung des Homogenisierventils eines Hochdruckhomogenisators

Lysat Eindickzentrifuge (Systemskizze)

Bild 5: Schematische Darstellung einer Lysat-Zentrifuge

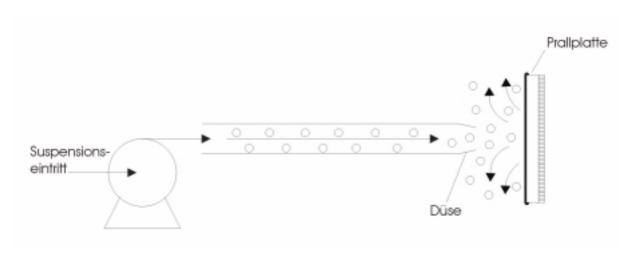
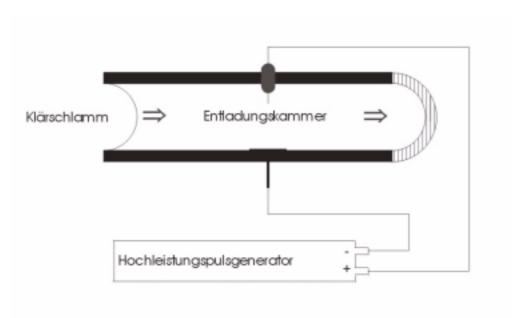
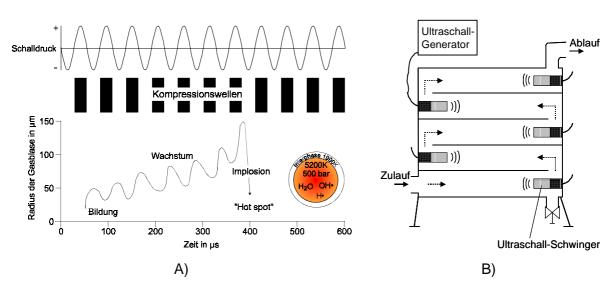
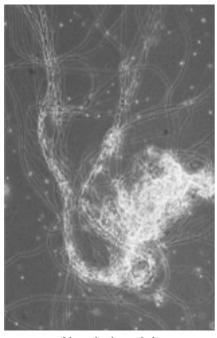
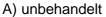
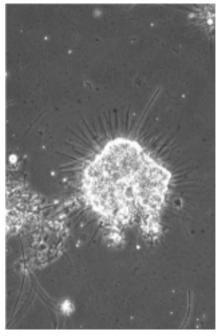


Bild 6: Schematische Darstellung des Prallstrahlverfahrens


Bild 7: Prinzipieller Aufbau des Hochleistungspulstechnik-Verfahrens

<u>Bild 8:</u> Schematische Darstellung von A) durch Ultraschall hervorgerufene Kavitation und B) eines Ultraschallreaktors

B) ultraschallbehandelt

Bild 9: Struktur des Blähschlammes A) vor und B) nach Ultraschallbehandlung [28]

Anschrift der Autoren

Dr.-Ing. Klaus Nickel
ULTRAWAVES Wasser- und Umwelttechnologien GmbH
Kasernenstr. 12
21073 Hamburg
Tel. 040 / 325 07 203
Email waves@directbox.com

Prof. Dr.-Ing. Uwe Neis Technische Universität Hamburg-Harburg Arbeitsbereich Abwasserwirtschaft 21071 Hamburg Tel. 040 / 42 878 – 3107 Email neis@tuhh.de